Publications by authors named "C L Weisz"

During development, inner hair cells (IHCs) in the mammalian cochlea are unresponsive to acoustic stimuli but instead exhibit spontaneous activity. During this same period, neurons originating from the medial olivocochlear complex (MOC) transiently innervate IHCs, regulating their firing pattern which is crucial for the correct development of the auditory pathway. Although the MOC-IHC is a cholinergic synapse, previous evidence indicates the widespread presence of gamma-aminobutyric acid (GABA) signaling markers, including presynaptic GABA receptors (GABAR).

View Article and Find Full Text PDF

The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits.

View Article and Find Full Text PDF

Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound.

View Article and Find Full Text PDF

The encoding of acoustic stimuli requires precise neuron timing. Auditory neurons in the cochlear nucleus (CN) and brainstem are well-suited for accurate analysis of fast acoustic signals, given their physiological specializations of fast membrane time constants, fast axonal conduction, and reliable synaptic transmission. The medial olivocochlear (MOC) neurons that provide efferent inhibition of the cochlea reside in the ventral brainstem and participate in these fast neural circuits.

View Article and Find Full Text PDF

Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development.

View Article and Find Full Text PDF