Publications by authors named "C L Tschirhart"

Electrons in moiré flat band systems can spontaneously break time-reversal symmetry, giving rise to a quantized anomalous Hall effect. In this study, we use a superconducting quantum interference device to image stray magnetic fields in twisted bilayer graphene aligned to hexagonal boron nitride. We find a magnetization of several Bohr magnetons per charge carrier, demonstrating that the magnetism is primarily orbital in nature.

View Article and Find Full Text PDF

Magnetism typically arises from the joint effect of Fermi statistics and repulsive Coulomb interactions, which favours ground states with non-zero electron spin. As a result, controlling spin magnetism with electric fields-a longstanding technological goal in spintronics and multiferroics-can be achieved only indirectly. Here we experimentally demonstrate direct electric-field control of magnetic states in an orbital Chern insulator, a magnetic system in which non-trivial band topology favours long-range order of orbital angular momentum but the spins are thought to remain disordered.

View Article and Find Full Text PDF

The quantum anomalous Hall (QAH) effect combines topology and magnetism to produce precisely quantized Hall resistance at zero magnetic field. We report the observation of a QAH effect in twisted bilayer graphene aligned to hexagonal boron nitride. The effect is driven by intrinsic strong interactions, which polarize the electrons into a single spin- and valley-resolved moiré miniband with Chern number = 1.

View Article and Find Full Text PDF

Objective: Spinal metastatic disease occurs in up to one-third of all cancer patients. Metastasis can lead to vertebral burst fracture and consequent neurologic compromise. Percutaneous vertebroplasty (PV) is a minimally invasive procedure aimed at restoring vertebral stability by augmentation of weakened vertebrae with bone cement.

View Article and Find Full Text PDF

The mechanical integrity of vertebral bone is compromised when metastatic cancer cells migrate to the spine, rendering it susceptible to burst fracture under physiologic loading. Risk of burst fracture has been shown to be dependent on the magnitude of the applied load, however limited work has been conducted to determine the effect of load type on the stability of the metastatic spine. The objective of this study was to use biphasic finite element modeling to evaluate the effect of multiple loading conditions on a metastatically-involved thoracic spinal motion segment.

View Article and Find Full Text PDF