Melanoma is one of the most aggressive types of skin cancer, and the need for advanced platforms to study this disease and to develop new treatments is rising. 3D bioprinted tumor models are emerging as advanced tools to tackle these needs, with the design of adequate bioinks being a fundamental step to address this challenging process. Thus, this work explores the synergy between two biobased nanofibers, nanofibrillated cellulose (NFC) and lysozyme amyloid nanofibrils (LNFs), to create pectin nanocomposite hydrogel bioinks for the 3D bioprinting of A375 melanoma cell-laden living constructs.
View Article and Find Full Text PDFThis study focuses on the preparation of layered bacterial nanocellulose (BNC) patches for drug delivery and wound healing in the context of herpes labialis. Nanostructured patches were prepared by selective aqueous diffusion of acyclovir (ACV, antiviral drug), hyaluronic acid (HA, skin healing promoter), and glycerol (GLY, plasticizer and humectant) in the BNC network, followed by assembly into trilayered patches with ACV on the central layer of the patch (ACV) or divided between two layers (ACV), to modulate drug release. Both patches showed good layers' adhesion and thermal stability (125 °C), UV barrier properties, good static (Young's modulus up to 0.
View Article and Find Full Text PDF