Publications by authors named "C L Reckhow"

The properties of the newly synthesized and partially glycosylated forms of the transferrin receptor were examined to determine which co- and post-translational modifications are necessary for the acquisition of transferrin binding activity and transport of the receptor to the cell surface. The nascent transferrin receptor containing core-glycosylated asparagine-linked oligosaccharides does not possess complete intersubunit disulfide bonds, sediments predominantly as a monomer in sucrose density gradients, and shows reduced binding to transferrin-agarose. Within 20-30 min after synthesis, the transferrin receptor acquires the ability to bind to a transferrin-linked affinity column.

View Article and Find Full Text PDF

A protein doublet (Mr = 135,000/130,000) was found to coprecipitate with an unglycosylated form of the transferrin receptor in tunicamycin-treated A431 cells. This doublet is not detected with either a monoclonal or polyclonal antibody to the transferrin receptor on Western blots indicating that these proteins do not interact directly with transferrin receptor antibody. Proteolytic digestion patterns of the individual proteins of the Mr = 135,000/130,000 doublet suggest that they are related to one another and are distinct from the transferrin receptor.

View Article and Find Full Text PDF

The transferrin receptor undergoes extensive co- and post-translational modifications during its biosynthesis. In this study, the functional and structural properties of the transferrin receptor from tunicamycin-treated A431 cells were examined. Incubation of A431 cells with this inhibitor of asparagine-linked glycosylation results in a shift of the apparent molecular weight of the transferrin receptor from 94,000 to 79,000.

View Article and Find Full Text PDF