Publications by authors named "C L Parra-Calderon"

Digital health solutions hold promise for enhancing healthcare delivery and patient outcomes, primarily driven by advancements such as machine learning, artificial intelligence, and data science, which enable the development of integrated care systems. Techniques for generating synthetic data from real datasets are highly advanced and continually evolving. This paper aims to present the INSAFEDARE project's ambition regarding medical devices' regulation and how real and synthetic data can be used to check if devices are safe and effective.

View Article and Find Full Text PDF

Key Research Areas (KRAs) were identified to establish a semantic interoperability framework for intensive medicine data in Europe. These include assessing common data model value, ensuring smooth data interoperability, supporting data standardization for efficient dataset use, and defining anonymization requirements to balance data protection and innovation.

View Article and Find Full Text PDF

Background: Art. 50 of the proposal for a Regulation on the European Health Data Space (EHDS) states that "health data access bodies shall provide access to electronic health data only through a secure processing environment, with technical and organizational measures and security and interoperability requirements".

Objective: To identify specific security measures that nodes participating in health data spaces shall implement based on the results of the IMPaCT-Data project, whose goal is to facilitate the exchange of electronic health records (EHR) between public entities based in Spain and the secondary use of this information for precision medicine research in compliance with the General Data Protection Regulation (GDPR).

View Article and Find Full Text PDF

Background: Functional impairment is one of the most decisive prognostic factors in patients with complex chronic diseases. A more significant functional impairment indicates that the disease is progressing, which requires implementing diagnostic and therapeutic actions that stop the exacerbation of the disease.

Objective: This study aimed to predict alterations in the clinical condition of patients with complex chronic diseases by predicting the Barthel Index (BI), to assess their clinical and functional status using an artificial intelligence model and data collected through an internet of things mobility device.

View Article and Find Full Text PDF