Publications by authors named "C L Latune"

Motivated by the growing importance of strong system-bath coupling in several branches of quantum information and related technological applications, we analyze and compare two strategies currently used to obtain (approximately) steady states in strong-coupling regime. The first strategy is based on perturbative expansions while the second one uses reaction coordinate mapping. Focusing on the widely used spin-boson model, we show that the predictions of these two strategies coincide in many situations.

View Article and Find Full Text PDF

One of the principal objectives of quantum thermodynamics is to explore quantum effects and their potential beneficial role in thermodynamic tasks like work extraction or refrigeration. So far, even though several papers have already shown that quantum effect could indeed bring quantum advantages, a global and deeper understanding is still lacking. Here, we extend previous models of autonomous machines to include quantum batteries made of arbitrary systems of discrete spectrum.

View Article and Find Full Text PDF

We propose a hitherto-unexplored concept in quantum thermodynamics: catalysis of heat-to-work conversion by quantum nonlinear pumping of the piston mode which extracts work from the machine. This concept is analogous to chemical reaction catalysis: Small energy investment by the catalyst (pump) may yield a large increase in heat-to-work conversion. Since it is powered by thermal baths, the catalyzed machine adheres to the Carnot bound, but may strongly enhance its efficiency and power compared with its noncatalyzed counterparts.

View Article and Find Full Text PDF