In this paper, the study of a plasma diagnostic system based on the THz time domain spectroscopy technique is presented. Such a system could potentially probe a large part of the electromagnetic spectrum currently covered by several other diagnostics in a single measurement. This feature, keeping in mind the basic requirements for plasma diagnostics in nuclear fusion experiments, such as robustness and hard environment applicability, as well as durability and low maintenance, makes the diagnostic of great interest.
View Article and Find Full Text PDFTerahertz imaging is unlocking unique capabilities for the analysis of cultural heritage artifacts. This paper uses terahertz time-domain imaging for the study of a gilded wooden artifact, providing a means to perform stratigraphic analysis, yielding information about the composition of the artifact, presence of certain materials identifiable through their THz spectral fingerprint, as well as alterations that have been performed over time. Due to the limited information that is available for many historic artifacts, the data that can be obtained through the presented technique can guide proper stewardship of the artifact, informing its long-term preservation.
View Article and Find Full Text PDFTerahertz time-domain imaging (THz-TDI) and spectral-domain optical coherence tomography (SD-OCT) are two techniques capable of providing 3D datasets from which depth profiles and cross-sectional images of an object can be derived. They are novel photonics technologies of particular relevance to the field of heritage science, for which the comprehension of the stratigraphic structure of a cultural heritage object may help in the understanding of its artistic technology and state of preservation. The differences in imaging depth, field of view, and axial/lateral resolutions of the two imaging techniques provide different but complementary information of the same scene.
View Article and Find Full Text PDFTerahertz spectroscopy, a noninvasive and nondestructive analytical technique used in art conservation and restoration, can provide compelling data concerning the composition and condition of culturally valuable and historical objects. Terahertz spectral databases of modern and ancient artists' pigments exist but lack explanations for the origins of the unique spectral features. Solid-state density functional theory simulations can provide insight into the molecular and intermolecular forces that dominate the observed absorption features as well as reveal deviations from simple harmonic vibrational behavior that can complicate these spectra.
View Article and Find Full Text PDFTerahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurface composition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18C Danish neoclassical painter of historical and mythological subjects. For the first time, a real hidden portrait on an easel painting has been imaged by THz-TDI, with an unexpected richness of detail. THz C- and B-scans have been compared with images obtained by x-ray radiography and invasive cross-sectional imaging, leading to a deeper understanding of the strengths and limitations of this technique for art diagnostic purposes and defining its role among complementary tools for the investigation of art objects.
View Article and Find Full Text PDF