Publications by authors named "C L Huffard"

Long-term biological time series that monitor ecosystems across the ocean's full water column are extremely rare. As a result, classic paradigms are yet to be tested. One such paradigm is that variations in coastal upwelling drive changes in marine ecosystems throughout the water column.

View Article and Find Full Text PDF

The deep-ocean carbon cycle is poorly quantified. An abyssal benthic rover was developed to make long time-series measurements of seafloor processes related to organic carbon remineralization and sequestration. Benthic Rover II (BR-II) is an autonomous dual-tracked vehicle that measures bottom water temperature and oxygen concentration, current velocity, and sediment community oxygen consumption (SCOC; respiration).

View Article and Find Full Text PDF

The cephalopods (Mollusca: Cephalopoda) are an exceptional class among the invertebrates, characterised by the advanced development of their conditional learning abilities, long-term memories, capacity for rapid colour change and extremely adaptable hydrostatic skeletons. These traits enable cephalopods to occupy diverse marine ecological niches, become successful predators, employ sophisticated predator avoidance behaviours and have complex intraspecific interactions. Where studied, observations of cephalopod mating systems have revealed detailed insights to the life histories and behavioural ecologies of these animals.

View Article and Find Full Text PDF

The Metabolic Theory of Ecology (MTE) posits that metabolic rate controls ecological processes, such as the rate of resource uptake, from the individual- to the ecosystem-scale. Metabolic rate has been found empirically to be an exponential function of whole organism body mass. We test a fundamental assumption of MTE, whether resource uptake scales to metabolism, by examining detritivores accessing a single common resource pool, an ideal study case.

View Article and Find Full Text PDF

Growing evidence suggests substantial quantities of particulate organic carbon (POC) produced in surface waters reach abyssal depths within days during episodic flux events. A 29-year record of in situ observations was used to examine episodic peaks in POC fluxes and sediment community oxygen consumption (SCOC) at Station M (NE Pacific, 4,000-m depth). From 1989 to 2017, 19% of POC flux at 3,400 m arrived during high-magnitude episodic events (≥mean + 2 σ), and 43% from 2011 to 2017.

View Article and Find Full Text PDF