Publications by authors named "C L Hinman"

Age-related macular degeneration (AMD), a leading cause of vision loss, primarily arises from the degeneration of retinal pigment epithelium (RPE) and photoreceptors. Current therapeutic options for dry AMD are limited. Encouragingly, cultured RPE cells on parylene-based biomimetic Bruch's membrane demonstrate characteristics akin to the native RPE layer.

View Article and Find Full Text PDF

Purpose: To report long-term results from a phase 1/2a clinical trial assessment of a scaffold-based human embryonic stem cell-derived retinal pigmented epithelium (RPE) implant in patients with advanced geographic atrophy (GA).

Design: A single-arm, open-label phase 1/2a clinical trial approved by the United States Food and Drug Administration.

Participants: Patients were 69-85 years of age at the time of enrollment and were legally blind in the treated eye (best-corrected visual acuity [BCVA], ≤ 20/200) as a result of GA involving the fovea.

View Article and Find Full Text PDF
Article Synopsis
  • This study reports a 1-year follow-up on a clinical trial that tested a new subretinal implant using human embryonic stem cell-derived retinal pigment epithelium (RPE) cells for patients with advanced non-neovascular age-related macular degeneration (NNAMD).
  • The trial involved 16 participants, focused on safety over the course of a year, and included a customized insertion procedure and low-dose immunosuppression to prevent rejection.
  • Results indicated the implant was generally safe, with some patients showing slight improvements in vision, though the study was not specifically designed to evaluate efficacy.
View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is the primary cause of blindness in adults over 60 years of age, and clinical trials are currently assessing the therapeutic potential of retinal pigmented epithelial (RPE) cell monolayers on implantable scaffolds to treat this disease. However, challenges related to the culture, long-term storage, and long-distance transport of such implants currently limit the widespread use of adherent RPE cells as therapeutics. Here we report a xeno-free protocol to cryopreserve a confluent monolayer of clinical-grade, human embryonic stem cell-derived RPE cells on a parylene scaffold (REPS) that yields viable, polarized, and functional RPE cells post-thaw.

View Article and Find Full Text PDF

Tau inclusions are a shared feature of many neurodegenerative diseases, among them frontotemporal dementia caused by tau mutations. Treatment approaches for these conditions include targeting posttranslational modifications of tau proteins, maintaining a steady-state amount of tau, and preventing its tendency to aggregate. We discovered a new regulatory pathway for tau degradation that operates through the farnesylated protein, Rhes, a GTPase in the Ras family.

View Article and Find Full Text PDF