Publications by authors named "C L G Bouchet"

The aim of the study was to purify and characterise recombinant proteins with the potential as an anti-parasite vaccine. Full-length cDNAs encoding seryl-tRNA synthetase (srs-2) were cloned from Haemonchus contortus (HcSRS-2) and Teladorsagia circumcincta (TcSRS-2). TcSRS-2 and HcSRS-2 cDNA (1458bp) encoded proteins of 486 amino acids, each of which was present as a single band of about 55 kDa on SDS-PAGE.

View Article and Find Full Text PDF

RNA interference (RNAi) on parasitic nematodes has been described as a valuable tool for screening putative targets that could be used as novel drug and/or vaccine candidates. This study aimed to set up a pipeline to identify potential targets using RNAi for vaccine/anti-parasite therapy development against Haemonchus contortus, a blood-feeding abomasal nematode parasite. The available H.

View Article and Find Full Text PDF

Exsheathment is crucial in the transition from free-living to parasitic phase for most strongyle nematode species. A greater understanding of this process could help in developing new parasitic control methods. This study aimed to identify commonalities in response to exsheathment triggers (heat acclimation, CO and pH) in a wide range of species (Haemonchus contortus, Trichostrongylus spp.

View Article and Find Full Text PDF

Aims: Pulmonary hypertension (PH) is characterised by an increase in pulmonary arterial pressure, ultimately leading to right ventricular failure and death. We have previously shown that nerve growth factor (NGF) plays a critical role in PH. Our objectives here were to determine whether NGF controls Connexin-43 (Cx43) expression and function in the pulmonary arterial smooth muscle, and whether this mechanism contributes to NGF-induced pulmonary artery hyperreactivity.

View Article and Find Full Text PDF

Pulmonary hypertension (PH) is the main pathology in lung circulation, characterized by increased pressure in pulmonary arteries and ultimately resulting in right heart failure with potentially fatal outcomes. Given the current lack of available curative treatments, it is of paramount importance to identify novel therapeutic targets. Due to its involvement in pulmonary arterial remodeling, hyperreactivity, and inflammation, our explorations have focused on the nerve growth factor (NGF), offering promising avenues for innovative therapeutic approaches.

View Article and Find Full Text PDF