Publications by authors named "C L Bokros"

The p86 subunit of eukaryotic initiation factor-(iso)4F from wheat germ exhibits saturable and substoichiometric binding to maize microtubules, induces microtubule bundling in vitro, and is colocalized or closely associated with cortical microtubule bundles in maize root cells, indicating its function as a microtubule-associated protein (MAP). The effects of p86 on the growth of short, taxol-stabilized maize microtubules were investigated. Pure microtubules underwent a gradual length redistribution, an increase in mean length, and a decrease in number concentration consistent with an end-to-end annealing mechanism of microtubule growth.

View Article and Find Full Text PDF

The isozyme form of eukaryotic initiation factor 4F [eIF-(iso)4F] from wheat germ is composed of a p28 subunit that binds the 7-methylguanine cap of mRNA and a p86 subunit having unknown function. The p86 subunit was found to have limited sequence similarity to a kinesin-like protein encoded by the katA gene of Arabidopsis thaliana. Native wheat germ eIF-(iso)4F and bacterially expressed p86 subunit and p86-p28 complex bound to taxol-stabilized maize microtubules (MTs) in vitro.

View Article and Find Full Text PDF

An understanding of the regulation of microtubule polymerization and dynamics in plant cells requires biochemical information on the structures, functions, and molecular interactions of plant tubulin and microtubule-associated proteins (MAPs) that regulate microtubule function. We have probed the regulatory domain and polymerization domain of purified maize tubulin using MAP2, an extensively characterized mammalian neuronal MAP. MAP2 bound to the surface of preformed, taxol-stabilized maize microtubules, with binding saturation occurring with one MAP2 molecule per five to six tubulin dimers, as it does with mammalian microtubules.

View Article and Find Full Text PDF

Taxol has been reported to induce the polymerization of plant tubulin into microtubules, albeit weakly when compared to that of mammalian tubulin [Morejohn, L.C., & Fosket, D.

View Article and Find Full Text PDF