Hyperglycemic emergencies cause significant losses of body water, sodium, and potassium. This report presents a method for computing the actual losses of water and monovalent cations in these emergencies. We developed formulas for computing the losses of water and monovalent cations as a function of the presenting serum sodium and glucose levels, the sum of the concentrations of sodium plus potassium in the lost fluids, and body water at the time of hyperglycemia presentation as measured by bioimpedance or in the initial euglycemic state as estimated by anthropometric formulas.
View Article and Find Full Text PDFWe investigate the design and performance of a new multilayer graphene metasurface for achieving ultrabroadband coherent perfect absorption (CPA) in the THz regime. The proposed structure comprises three graphene patterned metasurfaces separated by thin dielectric spacer layers. The top and bottom metasurfaces have crossed shape unit cells of varying sizes, while the middle graphene metasurface is square-shaped.
View Article and Find Full Text PDFRationale And Objective: The NKF-ASN Task Force recommends accurate kidney function estimation avoiding biases through racial adjustments. We explored the use of multiple kidney function biomarkers and hence estimated glomerular filtration rate (eGFR) equations to improve kidney function calculations in an ethnically diverse patient population.
Study Design: Prospective community cohort study.
Chirality is omnipresent in the living world. As biomimetic nanotechnology and self-assembly advance, they too need chirality. Accordingly, there is a pressing need to develop general methods to characterize chiral building blocks at the nanoscale in liquids such as water─the medium of life.
View Article and Find Full Text PDFThe inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems.
View Article and Find Full Text PDF