Publications by authors named "C Kreutz"

Background: Recent research indicates a role of gut microbiota in development and progression of life-threatening diseases such as cancer. Carcinomas of the biliary ducts, the so-called cholangiocarcinomas, are known for their aggressive tumor biology, implying poor prognosis of affected patients. An impact of the gut microbiota on cholangiocarcinoma development and progression is plausible due to the enterohepatic circulation and is therefore the subject of scientific debate, however evidence is still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed the proteomic profiles of 79 bladder cancer samples, categorizing them into non-muscle-invasive (NMIBC), muscle-invasive (MIBC), and neoadjuvant-treated MIBC groups.
  • MIBC showed significant changes in the extracellular matrix and immune response-related proteins, as well as a decrease in proteins related to cell adhesion and lipid metabolism compared to NMIBC.
  • The research identified multiple proteomic subgroups within MIBC and NMIBC that correlate with tissue type and metabolic pathways, revealing complex tumor-stroma interactions and significant genomic alterations in the cancers.
View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria play complex roles in two different cell death pathways: apoptosis and pyroptosis, particularly regarding NLRP3 inflammasome activation, but their exact mechanisms are not well understood.
  • The study found that activating NLRP3 while inhibiting apoptosis occurs when cells are under stress from various stimuli like nigericin and viruses, as these activators affect mitochondrial function rather than just triggering inflammasome activation.
  • NLRP3 activation needs a combination of signals—one from disrupted mitochondrial processes and another from specific NLRP3 activators—suggesting that both oxidative phosphorylation inhibition and apoptosis suppression influence cell fate.
View Article and Find Full Text PDF

Motivation: Mathematical modelling plays a crucial role in understanding inter- and intracellular signalling processes. Currently, ordinary differential equations (ODEs) are the predominant approach in systems biology for modelling such pathways. While ODE models offer mechanistic interpretability, they also suffer from limitations, including the need to consider all relevant compounds, resulting in large models difficult to handle numerically and requiring extensive data.

View Article and Find Full Text PDF

Foxi1 is a master regulator of ionocytes (ISCs / INCs) across species and organs. Two subtypes of ISCs exist, and both α- and β-ISCs regulate pH- and ion-homeostasis in epithelia. Gain and loss of FOXI1 function are associated with human diseases, including Pendred syndrome, male infertility, renal acidosis and cancers.

View Article and Find Full Text PDF