Publications by authors named "C Kressler"

Human B lymphocytes are attractive targets for immunotherapies in autoantibody-mediated diseases. Gene editing technologies could provide a powerful tool to determine gene regulatory networks regulating B cell differentiation into plasma cells, and identify novel therapeutic targets for prevention and treatment of autoimmune disorders. Here, we describe a new approach that uses CRISPR-Cas9 technology to target genes in primary human B cells for identifying plasma cell regulators.

View Article and Find Full Text PDF

CD4+ regulatory T cells (Tregs) are key mediators of immunological tolerance and promising effector cells for immuno-suppressive adoptive cellular therapy to fight autoimmunity and chronic inflammation. Their functional stability is critical for their clinical utility and has been correlated to the demethylated state of the TSDR/CNS2 enhancer element in the Treg lineage transcription factor FOXP3. However, proof for a causal contribution of the TSDR de-methylation to FOXP3 stability and Treg induction is so far lacking.

View Article and Find Full Text PDF

The concept of a "topographical memory" in lymphocytes implies a stable expression of homing receptors mediating trafficking of lymphocytes back to the tissue of initial activation. However, a significant plasticity of the gut-homing receptor αβ was found in CD8 T cells, questioning the concept. We now demonstrate that αβ expression in murine CD4 memory T cells is, in contrast, imprinted and remains stable in the absence of the inducing factor retinoic acid (RA) or other stimuli from mucosal environments.

View Article and Find Full Text PDF

The impact of epigenetics on the differentiation of memory T (Tmem) cells is poorly defined. We generated deep epigenomes comprising genome-wide profiles of DNA methylation, histone modifications, DNA accessibility, and coding and non-coding RNA expression in naive, central-, effector-, and terminally differentiated CD45RA CD4 Tmem cells from blood and CD69 Tmem cells from bone marrow (BM-Tmem). We observed a progressive and proliferation-associated global loss of DNA methylation in heterochromatic parts of the genome during Tmem cell differentiation.

View Article and Find Full Text PDF

The Rap G protein signal regulates Notch activation in early thymic progenitor cells, and deregulated Rap activation (Rap(high)) results in the development of Notch-dependent T-cell acute lymphoblastic leukemia (T-ALL). We demonstrate that the Rap signal is required for the proliferation and leukemogenesis of established Notch-dependent T-ALL cell lines. Attenuation of the Rap signal by the expression of a dominant-negative Rap1A17 or Rap1GAP, Sipa1, in a T-ALL cell line resulted in the reduced Notch processing at site 2 due to impaired maturation of Adam10.

View Article and Find Full Text PDF