Reducing calorie intake without malnutrition limits tumor progression but the underlying mechanisms are poorly understood. Here we show that dietary restriction (DR) suppresses tumor growth by enhancing CD8 T cell-mediated anti-tumor immunity. DR reshapes CD8 T cell differentiation within the tumor microenvironment (TME), promoting the development of effector T cell subsets while limiting the accumulation of exhausted T (Tex) cells, and synergizes with anti-PD1 immunotherapy to restrict tumor growth.
View Article and Find Full Text PDFGlucose is essential for T cell proliferation and function, yet its specific metabolic roles remain poorly defined. Here, we identify glycosphingolipid (GSL) biosynthesis as a key pathway fueled by glucose that enables CD8 T cell expansion and cytotoxic function . Using C-based stable isotope tracing, we demonstrate that CD8 effector T cells use glucose to synthesize uridine diphosphate-glucose (UDP-Glc), a precursor for glycogen, glycan, and GSL biosynthesis.
View Article and Find Full Text PDFFunctional and phenotypic heterogeneity of dendritic cells (DCs) play crucial roles in facilitating the development of diverse immune responses essential for host protection. Here, we report that KDM5C, a histone lysine demethylase, regulates conventional or classical DC (cDC) and plasmacytoid DC (pDC) population heterogeneity and function. Mice deficient in KDM5C in DCs have increased proportions of cDC2Bs and cDC1s, which is partly dependent on type I interferon (IFN) and pDCs.
View Article and Find Full Text PDFThe progressive decline of CD8 T cell effector function-also known as terminal exhaustion-is a major contributor to immune evasion in cancer. Yet, the molecular mechanisms that drive CD8 T cell dysfunction remain poorly understood. Here, we report that the Kelch-like ECH-associated protein 1 (KEAP1)-Nuclear factor erythroid 2-related factor 2 (NRF2) signaling axis, which mediates cellular adaptations to oxidative stress, directly regulates CD8 T cell exhaustion.
View Article and Find Full Text PDF