Cardiotoxicity can be defined as "chemically induced heart disease", which can occur with many different drug classes treating a range of diseases. It is the primary cause of drug attrition during pre-clinical development and withdrawal from the market. Drug induced cardiovascular toxicity can result from both functional effects with alteration of the contractile and electrical regulation in the heart and structural changes with morphological changes to cardiomyocytes and other cardiac cells.
View Article and Find Full Text PDFMesothelial cells have been shown to have remarkable plasticity towards mesenchymal cell types during development and in disease situations. Here, we have characterized the potential of mesothelial cells to undergo changes toward perivascular cells using an in vitro angiogenesis assay. We demonstrate that GFP-labeled mesothelial cells (GFP-MCs) aligned closely and specifically with endothelial networks formed when human dermal microvascular endothelial cells (HDMECs) were cultured in the presence of VEGF-A on normal human dermal fibroblasts (NHDFs) for a 7-day period.
View Article and Find Full Text PDFInterventional cardiac procedures may be associated with high patient doses and therefore require special attention to protect the patients from radiation injuries such as skin erythema, cardiovascular tissue reactions or radiation-induced cancer. In this study, patient exposure data is collected from 13 countries (37 clinics and nearly 50 interventional rooms) and for 10 different procedures. Dose data was collected from a total of 14,922 interventional cardiology procedures.
View Article and Find Full Text PDFA regulatory authority for radiation safety should continuously evaluate and improve the national safety framework, in line with current requirements and standards. In this context, the Greek Atomic Energy Commission initiated a series of concerted actions. The radiation dose to the population due to public and medical exposures was assessed.
View Article and Find Full Text PDFCellular dormancy and heterogeneity in cell cycle length provide important explanations for treatment failure after adjuvant therapy with S-phase cytotoxics in colorectal cancer (CRC), yet the molecular control of the dormant versus cycling state remains unknown. We sought to understand the molecular features of dormant CRC cells to facilitate rationale identification of compounds to target both dormant and cycling tumor cells. Unexpectedly, we demonstrate that dormant CRC cells are differentiated, yet retain clonogenic capacity.
View Article and Find Full Text PDF