Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours.
View Article and Find Full Text PDF(1)H NMR spectroscopy was employed to investigate the repercussion of Origanum dictamnus tea ingestion in several volunteers' urine metabolic profiles, among them two with chronic inflammatory bowel diseases (IBD), mild IBD and Crohn's disease. Herein, we demonstrate that the concentrations of a lot of urinary metabolites such as hippurate, trimethylamine oxide (TMAO), citrate, and creatinine are altered, which prompts the intestinal microflora function/content perturbation as well as kidney function regulation by dictamnus tea. Interestingly, our preliminary results showed that a high dose of dictamnus tea intake appeared to be toxic for a person with Crohn's disease, since it caused high endogenous ethanol excretion in urine.
View Article and Find Full Text PDFThis work proposes the purification of an active and efficient enzyme, extracellular poly(3-hydroxybutyrate) (PHB)-depolymerase, suitable for industrial applications. This is achieved by the application of an easy, fast, and cheap route, skipping the chromatography step. Chromatography with one or two columns is a common step in the purification procedure, which however renders the isolation of the enzyme a time consuming and an expensive process.
View Article and Find Full Text PDFInt J Immunopathol Pharmacol
February 2004
The 65 kD isoform of Glutamic Acid Decarboxylase (GAD), is one of the major autoantigens in human type 1 diabetes mellitus. This enzyme shares amino acid identity, in select regions already determined as antigenic with its counterpart from E. coli.
View Article and Find Full Text PDFType 1 diabetes arises from the autoimmune destruction of islet beta cells, with the participation of both arms of the immune system. To better characterize the beta cell membrane, we have raised monoclonal antibodies to the surface of the INS-1 insulinoma cell line. Twenty-two such antibodies were produced, 21 of the IgG class, all reactive to different cell membrane proteins from INS-1 and neonatal islet cells, yielding identical electrophoresis patterns, with molecular weights mainly between 45 and 60 kD.
View Article and Find Full Text PDF