Publications by authors named "C Kisker"

A study in Molecular Cell by Ramadhin et al. and two studies in Cell by van den Heuvel et al. and by Mevissen et al.

View Article and Find Full Text PDF

The chlamydial deubiquitinase Cdu1 of the obligate intracellular human pathogenic bacterium Chlamydia trachomatis plays important roles in the maintenance of chlamydial infection. Despite the structural similarities shared with its homologue Cdu2, both DUBs display remarkable differences in their enzymatic activity towards poly-UB chain substrates. Whereas Cdu1 is highly active towards K48- and K63- poly-UB chains, Cdu2 activity is restricted mostly to mono-UB substrates.

View Article and Find Full Text PDF

Upon infection by an intracellular pathogen, host cells activate apoptotic pathways to limit pathogen replication. Consequently, efficient proliferation of the obligate intracellular pathogen , a major cause of trachoma and sexually transmitted diseases, depends on the suppression of host cell apoptosis. secretes deubiquitinase ChlaDUB1 into the host cell, leading among other interactions to the stabilization of antiapoptotic proteins and, thus, suppression of host cell apoptosis.

View Article and Find Full Text PDF

The development of cancer therapeutics is often hindered by the fact that specific oncogenes cannot be directly pharmaceutically addressed. Targeting deubiquitylases that stabilize these oncogenes provides a promising alternative. USP28 and USP25 have been identified as such target deubiquitylases, and several small-molecule inhibitors indiscriminately inhibiting both enzymes have been developed.

View Article and Find Full Text PDF

The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage.

View Article and Find Full Text PDF