Bioelectrochemical systems (BES) as environmental remediation biotechnologies have boomed in the last two decades. Although BESs combined technologies with electro-chemistry, -biology, and -physics, microorganisms and biofilms remain at their core. In this review, various functional microorganisms in BESs for CO reduction, dehalogenation, nitrate, phosphate, and sulfate reduction, metal removal, and volatile organic compound oxidation are summarized and compared in detail.
View Article and Find Full Text PDFAcetobacterium woodii and Megasphaera hexanoica were co-cultured for caproic acid (CA) production from lactic acid (LA) and CO. Also, various concentrations (1 g/L, 3 g/L, 5 g/L, and 10 g/L) of Zero Valent Iron (ZVI) were supplied to study its impact on the co-culture system. In flask experiments, 10 g/L LA and 1.
View Article and Find Full Text PDFA simple cascade process based on the hydrothermal fractionation of Ulva spp. biomass was proposed. Considering the overall extraction yields (50 %), ulvan recovery (23 %), and ulvan composition, structural, mechanical and cytotoxic properties, the selected optimal final heating temperature was 160 °C.
View Article and Find Full Text PDFRecently, there has been notable interest in researching and industrially producing medium-chain carboxylic acids (MCCAs) like n-caproate and n-caprylate via chain elongation process. This study presents a comprehensive assessment of the behavior and MCCA production profiles of Clostridium kluyveri in batch and continuous modes, at different ethanol:acetate molar ratios (1.5:1, 3.
View Article and Find Full Text PDF