Objective: Extracellular matrix proteins play important roles in embryonic development and antibodies that specifically detect these proteins are essential to understanding their function. The zebrafish embryo is a popular model for vertebrate development but suffers from a dearth of authenticated antibody reagents for research. Here, we describe a novel antibody designed to detect the minor fibrillar collagen chain Col11a1a in zebrafish (AB strain).
View Article and Find Full Text PDFOsteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear.
View Article and Find Full Text PDFThe Center of Biomedical Research Excellence in Matrix Biology strives to improve our understanding of extracellular matrix at molecular, cellular, tissue, and organismal levels to generate new knowledge about pathophysiology, normal development, and regenerative medicine. The primary goals of the Center are to i) support junior investigators, ii) enhance the productivity of established scientists, iii) facilitate collaboration between both junior and established researchers, and iv) build biomedical research infrastructure that will support research relevant to cell-matrix interactions in disease progression, tissue repair and regeneration, and v) provide access to instrumentation and technical support. A Pilot Project program provides funding to investigators who propose applying their expertise to matrix biology questions.
View Article and Find Full Text PDFLigament wound healing involves the proliferation of a dense and disorganized fibrous matrix that slowly remodels into scar tissue at the injury site. This remodeling process does not fully restore the highly aligned collagen network that exists in native tissue, and consequently repaired ligament has decreased strength and durability. In order to identify treatments that stimulate collagen alignment and strengthen ligament repair, there is a need to develop in vitro models to study fibroblast activation during ligament wound healing.
View Article and Find Full Text PDFRet signaling is critical for formation of the enteric nervous system (ENS) because Ret activation promotes ENS precursor survival, proliferation, and migration and provides trophic support for mature enteric neurons. Although these roles are well established, we now provide evidence that increasing levels of the Ret ligand glial cell line-derived neurotrophic factor (GDNF) in mice causes alterations in ENS structure and function that are critically dependent on the time and location of increased GDNF availability. This is demonstrated using two different strains of transgenic mice and by injecting newborn mice with GDNF.
View Article and Find Full Text PDF