Photobiomodulation, showing positive effects on wound healing processes, has been performed mainly with lasers in the red/infrared spectrum. Light of shorter wavelengths can significantly influence biological systems. This study aimed to evaluate and compare the therapeutic effects of pulsed LED light of different wavelengths on wound healing in a diabetic (db/db) mouse excision wound model.
View Article and Find Full Text PDFInvestigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs.
View Article and Find Full Text PDFExtracorporeal shockwave therapy (ESWT) can stimulate processes to promote regeneration, including cell proliferation and modulation of inflammation. Specific miRNA expression panels have been established to define correlations with regulatory targets within these pathways. This study aims to investigate the influence of low-energy ESWT-applied within the subacute and chronic phase of SCI (spinal cord injury) on recovery in a rat spinal cord contusion model.
View Article and Find Full Text PDFPurpose: The aim of this study was to investigate the effect of extracorporeal shockwave therapy (ESWT) on bone microstructure as well as the bone-tendon-interface and the musculo-tendinous transition zone to explain the previously shown improved biomechanics in a degenerative rotator cuff tear animal model. This study hypothesized that biomechanical improvements related to ESWT are a result of improved bone microstructure and muscle tendon properties.
Methods: In this controlled laboratory study unilateral supraspinatus (SSP) tendon detachment was performed in 48 male Sprague-Dawley rats.
Background: This study aimed to investigate whether rodent shoulder specimens fixed in formaldehyde for histological and histomorphometric investigations and specimens stained using Lugol's solution for soft tissue visualization by micro-computed tomography (microCT) are still eligible to be used for bone architecture analysis by microCT.
Methods: In this controlled laboratory study, 11 male Sprague-Dawley rats were used. After sacrifice and exarticulation both shoulders of healthy rats were assigned into three groups: (A) control group (n = 2); (B) formaldehyde group (n = 4); (C) Lugol group (n = 5).