Purpose/objective: Stereotactic body radiation therapy (SBRT) has emerged as a valid treatment alternative for non-resectable liver metastases or hepatocellular carcinomas (HCC). Magnetic resonance (MR) guided SBRT has a high potential of further improving treatment quality, allowing for higher, tumoricidal irradiation doses whilst simultaneously sparing organs at risk. However, data on treatment outcome and patient acceptance is still limited.
View Article and Find Full Text PDFIntroduction: Hybrid magnetic resonance (MR) linear accelerators (MR-Linacs) for radiotherapy allow for the visualization and tracking of moving target volumes during the entire treatment. This makes gated treatments possible, decreasing the irradiated volumes and thus sparing healthy tissue from unnecessary radiation dose. Conventionally, tumors that are subject to respiration motion are treated by irradiating the entire area of potential target presence (internal target volume, ITV).
View Article and Find Full Text PDFTo ensure accurate reference dosimetry with ionization chambers in magnetic resonance linear accelerators (MR-linacs), the influence of the magnetic field on the response of the ionization chambers must be considered. The most direct method considering the influence of magnetic fields in dosimetry is to apply an appropriate absorbed-dose-to-water primary standard. At PTB, a new water calorimeter has been designed which is capable to determine D in an MR-linac.
View Article and Find Full Text PDFMR-integrated radiotherapy requires suitable dosimetry detectors to be used in magnetic fields. This study investigates the feasibility of using dedicated MR-compatible ionization chambers at MR-integrated radiotherapy devices. MR-compatible ionization chambers (Exradin A19MR, A1SLMR, A26MR, A28MR) were precisely modeled and their relative response in a 6MV treatment beam in the presence of a magnetic field was simulated using EGSnrc.
View Article and Find Full Text PDFBackground And Purpose: As shown in our previous study, highly accurate absolute dosimetry in 3D is feasible by combining polymer gels (PG) with thermoluminescence dosimetry (TLD). In this setup, the thermoluminescence (TL)-based point dose information is used to renormalize the PG. This new PG-TLD reference system is now extended to measurements in magnetic fields.
View Article and Find Full Text PDF