Publications by authors named "C Karch"

Autosomal dominant Alzheimer's disease (ADAD) is driven by rare variants in APP, PSEN1, and PSEN2. Although more than 200 pathogenic variants in these genes are known to cause ADAD, other variants are benign, may act as risk factors, or may even reduce Alzheimer's disease risk (e.g.

View Article and Find Full Text PDF

Background: PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP.

Methods: We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1, PSEN2, and APP and mechanistically characterized by integrating RNA-seq and ATAC-seq.

View Article and Find Full Text PDF

Hub regions in the brain, recognized for their roles in ensuring efficient information transfer, are vulnerable to pathological alterations in neurodegenerative conditions, including Alzheimer's disease (AD). Computational simulations and animal experiments have hinted at the theory of activity-dependent degeneration as the cause of this hub vulnerability. However, two critical issues remain unresolved.

View Article and Find Full Text PDF
Article Synopsis
  • * In Alzheimer's disease, these networks become more chaotic, as indicated by a drop in the small-world coefficient, a change linked to cognitive decline throughout the disease's progression.
  • * Our study examined the relationship between 10 cerebrospinal fluid protein biomarkers and small-world coefficients in Alzheimer's mutation carriers and non-carriers, finding that certain protein abnormalities indicate early changes in grey matter networks, while markers for inflammation and axonal injury correlate with declining small-world values.
View Article and Find Full Text PDF

This manuscript describes and summarizes the Dominantly Inherited Alzheimer Network Observational Study (DIAN Obs), highlighting the wealth of longitudinal data, samples, and results from this human cohort study of brain aging and a rare monogenic form of Alzheimer's disease (AD). DIAN Obs is an international collaborative longitudinal study initiated in 2008 with support from the National Institute on Aging (NIA), designed to obtain comprehensive and uniform data on brain biology and function in individuals at risk for autosomal dominant AD (ADAD). ADAD gene mutations in the amyloid protein precursor (), presenilin 1 (), or presenilin 2 () genes are deterministic causes of ADAD, with virtually full penetrance, and a predictable age at symptomatic onset.

View Article and Find Full Text PDF