The antiviral activity of chlorine dioxide (ClO) in liquid (ClO gas dissolved liquid) and gaseous state against avian influenza virus (AIV) and infectious bronchitis virus (IBV) was evaluated. To evaluate the effect of ClO in liquid state, suspension tests (10 ppm) and carrier tests in dropping / wiping techniques (100 ppm) were performed. In the suspension test, virus titers were reduced below the detection limit within 15 sec after treatment, in spite of the presence of an accompanying organic matter.
View Article and Find Full Text PDFFull genome sequencing of two bovine rotavirus A (RVA) strains isolated in Japan in 2019 revealed two genotype constellations; one had a constellation of G8-P[1]-I2-R2-C2-M2-A3-N2-T9-E2-H3. Thereupon, genotype T9 carried by RVA/Bovine-tc/JPN/AH1041/2022/G8P[1], constitutes a rare NSP3 genotype, and only two unusual Japanese bovine RVA strains have thus far been reported to carry this genotype. The other RVA/Bovine-tc/JPN/AH1207/2022/G6P[5] strain possessed a constellation of G6-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3.
View Article and Find Full Text PDFThe efficacy of ClO gas, as surface disinfectant at around 1,000 ppb against avian orthoavulaviruses type 1 (AOAV-1), infectious bronchitis virus (IBV), Escherichia coli (EC), and Salmonella Enteritidis (SE) was evaluated at the required level (≥99.9% reduction) on various surfaces. Exposing the surfaces to ClO gas for 1 hr reduced AOAV-1, except for rayon sheets which required 3 hr.
View Article and Find Full Text PDFBiosecurity enhancement contributes to the reduction of various microbial pathogens. Mammalian orthoreoviruses (MRVs) which are increasingly recognized as potentially serious problems on swine industry were used as indicators of biosecurity enhancement on two pig farms. Twelve MRVs were detected and isolated from fecal specimens of healthy pigs collected from one of the two farms in Japan.
View Article and Find Full Text PDFLivestock farming is affected by the occurrence of infectious diseases, but outbreaks can be prevented by effective cleaning and disinfection along with proper farm management. In the present study, bovine coronavirus (BCoV) and bovine rotavirus A (RVA) were inactivated using food additive-grade calcium hydroxide (FdCa(OH)) solution, quaternary ammonium compound (QAC) and their mixture through suspension tests as the primary screening, and afterward via carrier tests using dropping or dipping techniques as the secondary screenings. Viruses in the aqueous phase can be easily inactivated in the suspension tests, but once attached to the materials, they can become resistant to disinfectants, and require longer times to be inactivated.
View Article and Find Full Text PDF