Publications by authors named "C K Takimura"

Tissue-specific adult stem cells (ASC) are heterogeneous and characterized by a mix of progenitor cells that produce cells at various stages of differentiation, and ultimately different terminally differentiated cells. Understanding the heterogeneity of ASCs may lead to the development of improved protocols of cell isolation and optimized cell therapy clinical protocols. Using a combination of enzymatic and explant culture protocols, we obtained pADSC population, which is composed by two distinct morphologies: fibroblast-like cells (FLCs) and endothelial-like cells (ELCs).

View Article and Find Full Text PDF

Marfan syndrome (MFS) cardiovascular manifestations such as aortic aneurysms and cardiomyopathy carry substantial morbidity/mortality. We investigated the effects of lipoic acid, an antioxidant, on ROS production and aortic remodeling in a MFS mgΔ mouse model. MFS and WT (wild-type) 1-month-old mice were allocated to 3 groups: untreated, treated with losartan, and treated with lipoic acid.

View Article and Find Full Text PDF

Cell therapy repair strategies using adult mesenchymal stromal cells have shown promising evidence to prevent cardiac deterioration in rodents even in the absence of robust differentiation of the cells into cardiomyocytes. We tested whether increasing doses of porcine adipose-tissue derived mesenchymal stem cells (pASCs) increase cardiac tissue perfusion in pigs post-myocardial infarction (MI) receiving angiotensin-converting-enzyme inhibitor (ACE inhibitors) and Beta-blockers similarly to patients. Female pigs were subjected to MI induction by sponge permanent occlusion of left circumflex coronary artery (LCx) generating approximately 10% of injured LV area with minimum hemodynamic impact.

View Article and Find Full Text PDF

Whole-vessel remodeling critically determines lumen caliber in vascular (patho)physiology, and it is reportedly redox-dependent. We hypothesized that the cell-surface pool of the endoplasmic reticulum redox chaperone protein disulfide isomerase-A1 (peri/epicellular=pecPDI), which is known to support thrombosis, also regulates disease-associated vascular architecture. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling and plaque stability.

View Article and Find Full Text PDF