Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems.
View Article and Find Full Text PDFPlants host an array of microbial symbionts, including both bacterial and fungal endophytes located within their roots. While bacterial and fungal endophytes independently alter host plant growth, response to stress and susceptibility to disease, their combined effects on host plants are poorly studied. To tease apart interactions between co-occurring endophytes on plant growth, morphology, physiology, and survival we conducted a greenhouse experiment.
View Article and Find Full Text PDFPlant Cell Environ
November 2024
Proc Natl Acad Sci U S A
October 2024
Increasing heatwaves are threatening forest ecosystems globally. Leaf thermal regulation and tolerance are important for plant survival during heatwaves, though the interaction between these processes and water availability is unclear. Genotypes of the widely distributed foundation tree species were studied in a controlled common garden during a record summer heatwave-where air temperature exceeded 48 °C.
View Article and Find Full Text PDF