In the weak-field limit in which microwave spectroscopy is typically carried out, an application of a single-frequency pulse that is resonant with a molecular transition will create a coherence between the pair of states involved in the rotational transition, producing a free-induction decay (FID) that, after Fourier transform, produces a molecular signal at that same resonance frequency. With the advent of chirped-pulse Fourier transform microwave methods, the high-powered amplifiers needed to produce broadband microwave spectra also open up other experiments that probe the molecular response in the high-field regime. This paper describes a series of experiments involving resonant frequency pulses interrogating jet-cooled molecules under conditions of sufficient power to Rabi oscillate the two-state system through many Rabi cycles.
View Article and Find Full Text PDFA combination of broadband microwave spectroscopy and VUV photoionization time-of-flight mass spectra has been used to record rotational spectra of the prototypical phenoxy radical, its per-deuterated isotopomers, and the full set of singly C-substituted analogues. Rotational parameters associated with the fits to the full set of isotopomers produce a highly accurate r structure for the phenoxy radical. High-level ab initio calculations accurately reproduce the rotational constants and spin-rotation parameters.
View Article and Find Full Text PDFMeradimate is a broad-spectrum ultraviolet absorber used as a chemical filter in commercial sunscreens. Herein, we explore the ultrafast photodynamics occurring in methyl anthranilate (precursor to Meradimate) immediately after photoexcitation with ultraviolet radiation to understand the mechanisms underpinning Meradimate photoprotection. Using time-resolved photoelectron spectroscopy, signal from the first singlet excited state of methyl anthranilate shows an oscillatory behavior, i.
View Article and Find Full Text PDF