Positron emission tomography (PET) using radiolabeled prostate-specific membrane antigen targeting PET-imaging agents has been increasingly used over the past decade for imaging and directing prostate carcinoma treatment. Here, we summarize the available literature data on radiomics and machine learning using these imaging agents in prostate carcinoma. Gleason scores derived from biopsy and after resection are discordant in a large number of prostate carcinoma patients.
View Article and Find Full Text PDFProstate-specific membrane antigen (PSMA), a transmembrane glycoprotein, was shown to be expressed 100-1000 fold higher in prostate adenocarcinoma as compared to normal prostate epithelium. Given the enzymatic function of PSMA with the presence of an internalization triggering motif, various Glu-urea-Lys-based inhibitors have been developed and, amongst others, radiolabeled with positron emitters for targeted positron emission tomography imaging such as Ga-PSMA-HBED-CC Glu-urea-Lys(Ahx) as well as with beta and alpha-emitting radioisotopes for targeted therapy, e.g.
View Article and Find Full Text PDFHere, we report on the added value of principal component analysis applied to a dataset of texture features derived from 39 solitary pulmonary lung nodule (SPN) lesions for the purpose of differentiating benign from malignant lesions, as compared to the use of SUVmax alone. Texture features were derived using the LIFEx software. The eight best-performing first-, second-, and higher-order features for separating benign from malignant nodules, in addition to SUVmax (MaximumGreyLevelSUVbwIBSI184IY), were included for PCA.
View Article and Find Full Text PDFHypoxia leads to changes in tumor microenvironment (upregulated CAFs) with resultant aggressiveness. A key factor in the physiological response to hypoxia is hypoxia-inducible factor-1alpha (HIF-1α). [Ga]Ga-FAPI PET imaging has been demonstrated in various cancer types.
View Article and Find Full Text PDF