A forced degradation study of a proprietary short interfering RNA (siRNA) molecule most of whose constituent nucleotides have been modified at the 2' position was conducted to assess degradation pathways and stability liabilities. The siRNA was subjected to various conditions as a solid and in solution followed by analysis with reverse-phase ultra-performance liquid chromatography-mass spectrometry. Positional isomers of degradants gave rise to multiple chromatographic peaks with identical masses.
View Article and Find Full Text PDFPurpose: To show, using a model study, how electronic structure theory can be applied in combination with LC/UV/MS/MS for the prediction and identification of oxidative degradants.
Methods: The benzyloxazole 1, was used to represent an active pharmaceutical ingredient for oxidative forced degradation studies. Bond dissociation energies (BDEs) calculated at the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level with isodesmic corrections were used to predict sites of autoxidation.