Publications by authors named "C Jayyosi"

The cervical remodeling process during pregnancy is characterized by progressive compositional and structural changes in the tissues extra-cellular matrix (ECM). Appropriately timed remodeling is critical for healthy gestation and prevention of premature cervical softening leading to preterm birth (PTB). Modification of the ECM glycosaminoglycans (GAGs) content with advancing pregnancy, especially the non-sulfated GAG hyaluronan (HA), is a fundamental change associated with cervical remodeling.

View Article and Find Full Text PDF

Purpose: A topical corneal cross-linking solution that can be used as an adjunct or replacement to standard photochemical cross-linking (UV-riboflavin) methods remain an attractive possibility. Optimal concentration and delivery method for such topical corneal stabilization in the living rabbit eye were developed.

Methods: A series of experiments were carried out using Dutch-belted rabbits (3 months old, weighing 1.

View Article and Find Full Text PDF

The uterine cervix undergoes a complex remodelling process during pregnancy, characterized by dramatic changes in both extracellular matrix (ECM) structure and mechanical properties. Understanding the cervical remodelling process in a term or preterm birth will aid efforts for the prevention of preterm births (PTBs), which currently affect 14.8 million babies annually worldwide.

View Article and Find Full Text PDF

Solid electrolytes are crucial for the development of solid state batteries. Among different types of solid electrolytes, poly(ethylene oxide) (PEO)-based polymer electrolytes have attracted extensive attention owing to their excellent flexibility and easiness for processing. However, their relatively low ionic conductivities and electrochemical instability above 4 V limit their applications in batteries with high energy density.

View Article and Find Full Text PDF

Unlabelled: A well-timed modification of both the collagen and elastic fiber network in the cervix during pregnancy accompanies the evolution of tissue mechanical parameters that are key to a successful pregnancy. Understanding of the cervical mechanical behaviour along normal and abnormal pregnancy is crucial to define the molecular events that regulate remodeling in term and preterm birth (PTB). In this study, we measured the mechanical response of mouse cervical tissue to a history of cyclic loading and quantified the tissue's ability to recover from small and large deformations.

View Article and Find Full Text PDF