Publications by authors named "C Jaeschke"

This proof-of-principle study presents the ability of the recently developed iLovEnose to measure ultratrace levels of volatile organic compounds (VOCs) in simulated human breath based on the combination of multiple gas sensors. The iLovEnose was developed by our research team as a test bed for gas sensors that can be hosted in three serially connected compact low-volume and temperature-controlled compartments. Herein, the eNose system was equipped with conventional semiconducting metal oxide (MOX) gas sensors using a variety of base technologies providing 11 different sensor signals that were evaluated to determine six VOCs of interest at eight low to ultralow concentration levels (i.

View Article and Find Full Text PDF

Exhaled breath analysis for early disease detection may provide a convenient method for painless and non-invasive diagnosis. In this work, a novel, compact and easy-to-use breath analyzer platform with a modular sensing chamber and direct breath sampling unit is presented. The developed analyzer system comprises a compact, low volume, temperature-controlled sensing chamber in three modules that can host any type of resistive gas sensor arrays.

View Article and Find Full Text PDF

Our recently demonstrated innovative concept of electronic nose (eNose) based on a combination of gas sensors is further tested and benchmarked in the present study. The system is a test bed for gas sensors of different principal technologies distributed within three compartments, which share a compact, very low volume, temperature-controlled sensing chamber. Here, the eNose-based analyser contains three sensing arrays of commercially available semiconducting metal oxide (MOX) gas sensors: one compartment contains 8 analog MOX sensors, while the other two compartments comprise 10 digital MOX sensors.

View Article and Find Full Text PDF

Metal oxide (MOX) sensors are increasingly gaining attention in analytical applications. Their fundamental operation principle is based on conversion reactions of selected molecular species at their semiconducting surface. However, the exact turnover of analyte gas in relation to the concentration has not been investigated in detail to date.

View Article and Find Full Text PDF

According to their materials and operating parameters, metal oxide (MOX) sensors respond to target gases only by a change in sensor resistance with a lack in selectivity. By the use of infrared spectroscopy, highly discriminatory information from samples at a molecular level can be obtained and the selectivity can be enhanced. A low-volume gas cell was developed for a commercially available semiconducting MOX methane gas sensor and coupled directly to a mid-infrared gas sensor based on substrate-integrated hollow waveguide (iHWG) technology combined with a Fourier transform infrared spectrometer.

View Article and Find Full Text PDF