Publications by authors named "C Jachec"

The present study aimed at establishing feasibility of delivering short interfering RNA (siRNA) to target the coagulation cascade in rat and rabbit, two commonly used species for studying thrombosis and hemostasis. siRNAs that produced over 90% mRNA knockdown of rat plasma prekallikrein and rabbit Factor X (FX) were identified from in vitro screens. An ionizable amino lipid based lipid nanoparticle (LNP) formulation for siRNA in vivo delivery was characterized as tolerable and exerting no appreciable effect on coagulability at day 7 postdosing in both species.

View Article and Find Full Text PDF

The life-threatening consequences of acquired, or drug-induced, long QT syndrome due to block of the human ether-a-go-go-related gene (hERG) channel are well appreciated and have been the cause of several drugs being removed from the market in recent years because of patient death. In the last decade, the propensity for block of the hERG channel by a diverse and expanding set of compounds has led to the requirement that all new drugs be tested for hERG channel block in a functional patch-clamp assay. Because of the need to identify potential hERG blockers early in the discovery process, radiometric hERG binding assays are preferred over patch-clamp assays for compound triage, because of relative advantages in speed and cost.

View Article and Find Full Text PDF

In the present study, we describe the characterization of a positive allosteric modulator at metabotropic glutamate subtype 2 receptors (mGluR2). N-(4-(2-Methoxyphenoxy)-phenyl-N-(2,2,2-trifluoroethylsulfonyl)-pyrid-3-ylmethylamine (LY487379) is a selective positive allosteric modulator at human mGluR2 and is without activity at human mGluR3. Furthermore, LY487379 has no intrinsic agonist or antagonist activity at hmGluR2, as determined by functional guanosine 5'(gamma-[35S]thio)triphosphate ([35S]GTPgammaS) binding, single-cell Ca2+ imaging, and electrophysiological studies.

View Article and Find Full Text PDF

Cell lines expressing the human metabotropic glutamate receptor subtype 5a (hmGluR5a) and hmGluR1b were used as targets in an automated high-throughput screening (HTS) system that measures changes in intracellular Ca2+ ([Ca2+]i) using fluorescence detection. This functional screen was used to identify the mGluR5-selective antagonist, SIB-1757 [6-methyl-2-(phenylazo)-3-pyridinol], which inhibited the glutamate-induced [Ca2+]i responses at hmGluR5 with an IC50 of 0.37 microM compared with an IC50 of >100 microM at hmGluR1.

View Article and Find Full Text PDF