The autotaxin-lysophosphatidic acid receptor (ATX-LPAR) signaling axis is pivotal in various clinical conditions, including cancer and autoimmune disorders. This axis promotes tumorigenicity by interacting with the tumor microenvironment, facilitating metastasis, and conceding antitumor immunity, thereby fostering resistance to conventional cancer therapies. Recent studies highlight the promise of ATX/LPAR inhibitors in combination with conventional chemotherapeutic drugs to overcome some forms of this resistance, representing a novel therapeutic strategy.
View Article and Find Full Text PDFThe development of drug resistance in cancer cells poses a significant challenge for treatment, with nearly 90% of cancer-related deaths attributed to it. Over 50% of ovarian cancer patients and 30-40% of breast cancer patients exhibit resistance to therapies such as Taxol. Previous literature has shown that cytotoxic cancer therapies and ionizing radiation damage tumors, prompting cancer cells to exploit the autotaxin (ATX)-lysophosphatidic acid (LPA)-lysophosphatidic acid receptor (LPAR) signaling axis to enhance survival pathways, thus reducing treatment efficacy.
View Article and Find Full Text PDFCognitive impairment is a common problem in the geriatric population and is characterized by variable symptoms of memory difficulties, executive dysfunction, language or visuospatial problems, and behavioral changes. It is imperative that primary care clinicians recognize and differentiate the variable symptoms associated with cognitive impairment from changes attributable to normal aging or secondary to other medical conditions. A thorough evaluation for potentially reversible causes of dementia is required before diagnosis with a neurodegenerative dementia.
View Article and Find Full Text PDFMutations in the SWI/SNF chromatin remodeling complex occur in ~20% of cancers. In rhabdoid tumors defined by loss of the SWI/SNF subunit , dysregulation of enhancer-mediated gene expression is pivotal in driving oncogenesis. Enhancer dysregulation in this setting is tied to retention of the SWI/SNF ATPase BRG1-which becomes essential in the absence of -but precisely how BRG1 contributes to this process remains unknown.
View Article and Find Full Text PDF