Publications by authors named "C J Winrow"

Aims: Dysfunction of nitric oxide-soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate signalling is implicated in the pathophysiology of cognitive impairment. Zagociguat is a central nervous system (CNS) penetrant sGC stimulator designed to amplify nitric oxide-cyclic guanosine monophosphate signalling in the CNS. This article describes a phase 1b study evaluating the safety and pharmacodynamic effects of zagociguat.

View Article and Find Full Text PDF

Soluble guanylate cyclase (sGC) and its product, cyclic guanosine monophosphate, play a role in learning and memory formation. Zagociguat (CY6463) is a novel stimulator of sGC being developed for the treatment of neurodegenerative disease. Single zagociguat doses of 0.

View Article and Find Full Text PDF

Phelan-McDermid syndrome (PMS) was initially called the 22q13 deletion syndrome based on its etiology as a deletion of the distal long arm of chromosome 22. These included terminal and interstitial deletions, as well as other structural rearrangements. Later, pathogenetic variants and deletions of the SHANK3 gene were found to result in a phenotype consistent with PMS.

View Article and Find Full Text PDF

Orexin receptors 42 are activated by the endogenous polypeptides orexin-A and orexin-B (also known as hypocretin-1 and -2; 33 and 28 aa) derived from a common precursor, preproorexin or orexin precursor, by proteolytic cleavage and some typical peptide modifications [109]. Currently the only orexin receptor ligands in clinical use are suvorexant and lemborexant, which are used as hypnotics. Orexin receptor crystal structures have been solved [134, 133, 54, 117, 46].

View Article and Find Full Text PDF

Background: Inflammation in the central nervous system (CNS) is observed in many neurological disorders. Nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling plays an essential role in modulating neuroinflammation. CYR119 is a CNS-penetrant sGC stimulator that amplifies endogenous NO-sGC-cGMP signaling.

View Article and Find Full Text PDF