Publications by authors named "C J Soeder"

Interspecies hybrid sterility has been extensively studied, especially in the genus . Hybrid sterility is more often found in the heterogametic (XY or ZW) sex, a trend called Haldane's rule. Although this phenomenon is pervasive, identification of a common genetic mechanism remains elusive, with modest support found for a range of potential theories.

View Article and Find Full Text PDF

Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear.

View Article and Find Full Text PDF

How dietary selection affects genome evolution to define the optimal range of nutrient intake is a poorly understood question with medical relevance. We have addressed this question by analyzing and , recently diverged species with differential diet choice. larvae, specialized to a nutrient scarce diet, did not survive on sugar-rich conditions, while the generalist species was sugar tolerant.

View Article and Find Full Text PDF

Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species.

View Article and Find Full Text PDF

Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1-4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown.

View Article and Find Full Text PDF