Large amounts of wastewater are produced from semiconductor manufacturing, and the production energy consumption has skyrocketed with its global demand in recent years. Forward osmosis (FO) provides unique merits in reclaiming the wastewater if suitable draw solutes with high water flux, low leakage, and limited energy requirement in regeneration are available. Two lower critical solution temperature-ionic liquids (LCST-ILs), tetrabutylphosphonium trimethylbenzensulfonate ([P][TMBS]) and tetrabutylphosphonium maleate ([P][Mal]) were synthesized and systematically assessed as recycled draw solutes in FO for the water reclamation from the wastewater of Si-ingot sawing.
View Article and Find Full Text PDFObjectives: To evaluate the multifunctionality of silver-copper co-loaded mesoporous bioactive glass (MBG), with the goal of developing an advanced pulp-capping material.
Methods: The synthesis of materials was conducted using the sol-gel method, following the approach described in previous studies but with some modifications. The composition included 80 mol% SiO₂, 15 mol% CaO, and 5 mol% P₂O₅, with additional components of 5 mol% silver, 5 mol% copper, or 1 mol% silver combined with 4 mol% copper, designated as Ag5/80S, Cu5/80S, or Ag1Cu4/80S, respectively.
To evaluate the relative efficacy of various physical therapy interventions for chronic ankle instability (CAI). A network meta-analysis of randomized controlled trials. PubMed, Cochrane Library, Embase, Scopus, and CINAHL bibliographic databases were searched up to December 2023.
View Article and Find Full Text PDFThe large and rapid increase in the incidence and mortality of colorectal cancer (CRC) demonstrates the urgent need for new drugs with higher efficacy to treat CRC. However, the lack of applicable and reliable preclinical models significantly hinders the progress of drug development. Patient-derived xenograft (PDX) models are currently considered reliable in vivo preclinical models for predicting drug efficacy in cancer patients.
View Article and Find Full Text PDFPerovskite solar cells are among the most promising renewable energy devices, and enhancing their stability is crucial for commercialization. This research presents the use of L-Ergothioneine (L-EGT) as a passivation material in perovskite solar cells, strategically placed between the electron transport layer and the perovskite absorber layer to mitigate defect states at the heterojunction interface. Surface analysis reveals that introducing L-EGT passivation material significantly improves the quality of the perovskite film.
View Article and Find Full Text PDF