Publications by authors named "C J Restall"

The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.

View Article and Find Full Text PDF

Stanniocalcin-1 (STC1) is a secreted glycoprotein implicated in several pathologies including retinal degeneration, cerebral ischemia, angiogenesis and inflammation. Aberrant STC1 expression has been reported in breast cancer but the significance of this is not clear. High levels of STC1 expression were found in the aggressive 4T1 murine mammary tumor cells and in the MDA-MB-231 human breast cancer line.

View Article and Find Full Text PDF

Treatment options are limited for patients with breast cancer presenting with metastatic disease. Targeting of tumor-associated macrophages through the inhibition of colony-stimulating factor-1 receptor (CSF-1R), a key macrophage signaling pathway, has been reported to reduce tumor growth and metastasis, and these treatments are now in clinical trials. Here, we report that, surprisingly, treatment with neutralizing anti-CSF-1R and anti-CSF-1 antibodies, or with two different small-molecule inhibitors of CSF-1R, could actually increase spontaneous metastasis without altering primary tumor growth in mice bearing two independently derived mammary tumors.

View Article and Find Full Text PDF

Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency.

View Article and Find Full Text PDF

Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour.

View Article and Find Full Text PDF