Publications by authors named "C J Pynn"

This study demonstrates how the latest ultrahigh-performance liquid chromatography (UHPLC) technology can be combined with high-resolution accurate-mass (HRAM) mass spectrometry (MS) and long columns packed with fully porous particles to improve bottom-up proteomics analysis with nanoflow liquid chromatography-mass spectrometry (nanoLC-MS) methods. The increased back pressures from the UHPLC system enabled the use of 75 μm I.D.

View Article and Find Full Text PDF

Although current LC-MS technology permits scientists to efficiently screen clinical samples in translational research, e.g., steroids, biogenic amines, and even plasma or serum proteomes, in a daily routine, maintaining the balance between throughput and analytical depth is still a limiting factor.

View Article and Find Full Text PDF

Decision-makers in school psychology are presently engaged in the process of determining how to, if possible, move forward with conducting mandated psychoeducational evaluations of students in schools during the pandemic. Whereas prominent organizations within the profession (e.g.

View Article and Find Full Text PDF

The effect of employing an AlGaN cap layer in the active region of green c-plane light-emitting diodes (LEDs) was studied. Each quantum well (QW) and barrier in the active region consisted of an InGaN QW and a thin AlGaN cap layer grown at a relatively low temperature and a GaN barrier grown at a higher temperature. A series of experiments and simulations were carried out to explore the effects of varying the AlGaN cap layer thickness and GaN barrier growth temperature on LED efficiency and electrical performance.

View Article and Find Full Text PDF

Commercial LEDs for solid-state lighting are often designed for operation at current densities in the droop regime (~35 A/cm) to minimize costly chip area; however, many benefits can be realized by operating at low current density (J ≈1 - 5 A/cm). Along with mitigation of droop losses and reduction of the operating voltage, low J operation of LEDs opens the design space for high light extraction efficiency (LEE). This work presents detailed ray tracing simulations of an LED design for low J operation with LEE ≈94%.

View Article and Find Full Text PDF