Publications by authors named "C J Ohnmacht"

Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3 regulatory T cells (Treg cells). Here, we show that in the lamina propria of the small intestine, the alternative NF-κB family member RelB is necessary for the differentiation of cryptopatch and isolated lymphoid follicle-associated DCs (CIA-DCs). Moreover, single-cell RNA sequencing reveals a RelB-dependent signature in migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction including elevated expression and release of the chemokine CCL22 from RelB-deficient conventional DCs (cDCs).

View Article and Find Full Text PDF

Background: Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies.

View Article and Find Full Text PDF

Eosinophil recruitment is a pathological hallmark of many allergic and helminthic diseases. Here, we investigated chemokine receptor CCR3-induced eosinophil recruitment in sialyltransferase mice. We found a marked decrease in eosinophil extravasation into CCL11-stimulated cremaster muscles and into the inflamed peritoneal cavity of mice.

View Article and Find Full Text PDF

Peripherally-induced regulatory T cells (pTregs) expressing the retinoic acid receptor-related orphan-receptor gamma t (RORγt) are indispensable for intestinal immune homeostasis. Nuclear factor kappa family members regulate the differentiation of thymic Tregs and promote their survival in the periphery. However, the Treg intrinsic molecular mechanisms controlling the size of the pTregs in the intestine and associated lymphoid organs remain unclear.

View Article and Find Full Text PDF

T follicular helper (T) cells are essential for effective antibody responses, but deciphering the intrinsic wiring of mouse T cells has long been hampered by the lack of a reliable protocol for their generation in vitro. We report that transforming growth factor-β (TGF-β) induces robust expression of T hallmark molecules CXCR5 and Bcl6 in activated mouse CD4 T cells in vitro. TGF-β-induced mouse CXCR5 T cells are phenotypically, transcriptionally, and functionally similar to in vivo-generated T cells and provide critical help to B cells.

View Article and Find Full Text PDF