Publications by authors named "C J Lemckert"

In recent years, there has been a growing interest in piezoelectric energy harvesting systems, particularly for their potential to recharge or replace batteries in energy-efficient electronic devices and wireless sensor networks. Nonetheless, the conventional linear piezoelectric energy harvesters (PEH) face limitations in ultra-low frequency vibrations (1-10 Hz) due to their narrow operating bandwidth and higher resonance frequencies. To address this, researchers explored compact shaped geometries, with spiral PEH being one such design to lower resonance frequencies by reducing structural stiffness.

View Article and Find Full Text PDF

Piezoelectric energy harvesting systems have been drawing the attention of the research community over recent years due to their potential for recharging/replacing batteries embedded in low-power-consuming smart electronic devices and wireless sensor networks. However, conventional linear piezoelectric energy harvesters (PEH) are often not a viable solution in such advanced practices, as they suffer from a narrow operating bandwidth, having a single resonance peak present in the frequency spectrum and very low voltage generation, which limits their ability to function as a standalone energy harvester. Generally, the most common PEH is the conventional cantilever beam harvester (CBH) attached with a piezoelectric patch and a proof mass.

View Article and Find Full Text PDF

In recent years, harvesting energy from ubiquitous ultralow-frequency vibration sources, such as biomechanical motions using piezoelectric materials to power wearable devices and wireless sensors (e.g., personalized assistive tools for monitoring human locomotion and physiological signals), has drawn considerable interest from the renewable energy research community.

View Article and Find Full Text PDF

Sunlight disinfection is important for treatment of wastewater within maturation ponds. This study analyses the movement of Escherichi coli within a slice of a maturation pond, being affected by stratification, sunlight attenuation and mixing driven by wind shear and natural convection using computational fluid dynamics (CFD). Since the exposure to ultraviolet light is most effective in the near-surface region of the pond, natural convective mixing mechanisms to transport the pathogens from the lower parts of the pond are critical for disinfection efficacy.

View Article and Find Full Text PDF

Bioretention basins are one of the most commonly used green stormwater features, with the potential to accumulate significant levels of nitrogen (N) in their soil and to permanently remove it through denitrification. Many studies have investigated the N removal potential of bioretention basins through the assessment of inflow and outflow concentrations. However, their long-term N removal through soil accumulation and denitrification potential is less known.

View Article and Find Full Text PDF