Publications by authors named "C J Hoggart"

The use of siblings to infer the factors influencing complex traits has been a cornerstone of quantitative genetics. Here, we utilise siblings for a novel application: the inference of genetic architecture, specifically that relating to individuals with extreme trait values (e.g.

View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) is a complex, heterogeneous disease with distinct etiological mechanisms. These different etiologies may give rise to multiple subtypes of CAD that could benefit from alternative preventions and treatments. However, so far, there have been no systematic efforts to predict CAD subtypes using clinical and genetic factors.

View Article and Find Full Text PDF

Understanding the genetic architecture of human traits is of key biological, medical and evolutionary importance. Despite much progress, little is known about how genetic architecture varies across the trait continuum and, in particular, if it differs in the tails of complex traits, where disease often occurs. Here, applying a novel approach based on polygenic scores, we reveal striking departures from polygenic architecture across 148 quantitative trait tails, consistent with distinct concentrations of high-impact rare alleles in one or both tails of most of the traits.

View Article and Find Full Text PDF

Polygenic risk scores (PRSs) have improved in predictive performance, but several challenges remain to be addressed before PRSs can be implemented in the clinic, including reduced predictive performance of PRSs in diverse populations, and the interpretation and communication of genetic results to both providers and patients. To address these challenges, the National Human Genome Research Institute-funded Electronic Medical Records and Genomics (eMERGE) Network has developed a framework and pipeline for return of a PRS-based genome-informed risk assessment to 25,000 diverse adults and children as part of a clinical study. From an initial list of 23 conditions, ten were selected for implementation based on PRS performance, medical actionability and potential clinical utility, including cardiometabolic diseases and cancer.

View Article and Find Full Text PDF

Here we present BridgePRS, a novel Bayesian polygenic risk score (PRS) method that leverages shared genetic effects across ancestries to increase PRS portability. We evaluate BridgePRS via simulations and real UK Biobank data across 19 traits in individuals of African, South Asian and East Asian ancestry, using both UK Biobank and Biobank Japan genome-wide association study summary statistics; out-of-cohort validation is performed in the Mount Sinai (New York) BioMe biobank. BridgePRS is compared with the leading alternative, PRS-CSx, and two other PRS methods.

View Article and Find Full Text PDF