Publications by authors named "C J Hamon"

Multicomponent self-assembly has been explored to create novel metamaterials from nanoparticles of different sizes and compositions, but the assembly of nanoparticles with complementary shapes remains rare. Recent binary assemblies were mediated by DNA base pairing or induced by solvent evaporation. Here, we introduce depletion-induced self-assembly (DISA) as a novel approach to constructing tunable binary lattices.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are tackling the challenge of creating functional materials that direct heat flow in specific ways to improve thermal management.
  • They used a technique called spatiotemporally resolved thermoreflectance to study how heat moves in supercrystals made from anisotropic gold (Au) nanocrystals, finding that heat flows more easily along the long axis of these nanocrystals.
  • By adjusting the shape of the nanocrystals, they demonstrated increased control over heat directionality, and they used simulations to understand this behavior, offering insights for future applications in thermal management technologies.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists try to copy nature's amazing structures, but making complex supercrystals from tiny particles (called nanoparticles) is hard because they're usually very symmetrical.
  • This study looks at how the shape of these nanoparticles and their shapes' confinement in specially designed molds can help them stick together to form new supercrystals.
  • The researchers found that the edges of the mold help direct the growth of the crystals and that having flat surfaces is important for making sure they grow the right way, which could help create new types of materials.
View Article and Find Full Text PDF

Depletion-induced self-assembly is routinely used to separate plasmonic nanoparticles (NPs) of different shapes, but less often for its ability to create supercrystals (SCs) in suspension. Therefore, these plasmonic assemblies have not yet reached a high level of maturity and their in-depth characterization by a combination of in situ techniques is still very much needed. In this work, gold triangles (AuNTs) and silver nanorods (AgNRs) are assembled by depletion-induced self-assembly.

View Article and Find Full Text PDF

Accurate shape description is a challenge in materials science. Small-angle X-ray scattering (SAXS) can provide the shape, size and polydispersity of nanoparticles by form factor modelling. However, simple geometric models such as the ellipsoid may not be enough to describe objects with complex shapes.

View Article and Find Full Text PDF