Oligonucleotides containing 2'-O-aminopropyl-substituted RNA have been synthesized. The 2'-O-(aminopropyl)adenosine (APA), 2'-O-(aminopropyl)cytidine (APC), 2'-O-(aminopropyl)-guanosine (APG), and 2'-O-(aminopropyl)uridine (APU) have been prepared in high yield from the ribonucleoside, protected, and incorporated into an oligonucleotide using conventional phosphoramidite chemistry. Molecular dynamics studies of a dinucleotide in water demonstrates that a short alkylamine located off the 2'-oxygen of ribonucleotides alters the sugar pucker of the nucleoside but does not form a tight ion pair with the proximate phosphate.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
May 1996
Biophysical and pharmacokinetic properties of five analogs of ISIS 3082, a 20-mer phosphorothioate oligodeoxynucleotide that inhibits the expression of mouse intercellular adhesion molecule 1, were evaluated. Compared to the parent compound, ISIS 3082, the 2'-propoxy modified phosphodiester, ISIS 9044 and the 2'-propoxy phosphorothioate, ISIS 9045, had greater affinity for complementary RNA and were more lipophilic. A chimeric oligonucleotide comprised of 2'-propoxy diester wings and a phosphorothioate deoxy center (ISIS 9046) had equal affinity.
View Article and Find Full Text PDFThe nuclease stability and melting temperatures (Tm) were compared for fully modified oligoribonucleotide sequences containing 2'-fluoro, 2'-O-methyl, 2'-O-propyl and 2'-O-pentyl nucleotides. Duplexes formed between 2' modified oligoribonucleotides and RNA have typical A-form geometry as observed by circular dichroism spectroscopy. Modifications, with the exception of 2'-O-pentyl, were observed to increase the Tm of duplexes formed with complementary RNA.
View Article and Find Full Text PDFAntisense oligonucleotides have the ability to inhibit gene expression in viral infections, malignancy, and other diseases. Even though much work has been accomplished with oligonucleotides demonstrating in vitro therapeutic effects, little work has been done to address how these molecules gain access to the cell. One of the plausible means of entrance could be through passive diffusion of the oligonucleotides through the cellular lipid bilayer.
View Article and Find Full Text PDF