High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFBackground: Previous meta-analyses have yielded conflicting results on the optimal surgical treatment strategy in patients with synchronous colorectal liver metastases (sCRLM). This network meta-analysis aims to provide an overview on colorectal-, liver first and simultaneous resections to treat sCRLM.
Methods: A search was conducted in MEDLINE, Embase and Cochrane CENTRAL (inception-July 11,2023).
Objectives: To pioneer the first artificial intelligence system integrating radiological and objective clinical data, simulating the clinical reasoning process, for the early prediction of high-risk influenza patients.
Materials And Methods: Our system was developed using a cohort from National Taiwan University Hospital in Taiwan, with external validation data from ASST Grande Ospedale Metropolitano Niguarda in Italy. Convolutional neural networks pretrained on ImageNet were regressively trained using a 5-point scale to develop the influenza chest X-ray (CXR) severity scoring model, FluDeep-XR.
A search for the exclusive hadronic decays W^{±}→π^{±}γ, W^{±}→K^{±}γ, and W^{±}→ρ^{±}γ is performed using up to 140 fb^{-1} of proton-proton collisions recorded with the ATLAS detector at a center-of-mass energy of sqrt[s]=13 TeV. If observed, these rare processes would provide a unique test bench for the quantum chromodynamics factorization formalism used to calculate cross sections at colliders. Additionally, at future colliders, these decays could offer a new way to measure the W boson mass through fully reconstructed decay products.
View Article and Find Full Text PDF