Background: Traumatic high cervical spinal cord injury (SCI) can result in a devastating loss of functional respiration, leaving patients permanently dependent on mechanical ventilation. Nerve transfer is a promising reinnervation strategy that has the potential to restore connectivity in paralyzed distal muscles. The spinal accessory nerve (SAN) remains functional in most cases after high cervical SCI and can serve as a donor to reinnervate the phrenic nerve (PN), thereby improving diaphragmatic function.
View Article and Find Full Text PDFBackground And Objectives: Advanced diffusion-weighted MRI (DWI) modeling, such as diffusion tensor imaging (DTI) and diffusion basis spectrum imaging (DBSI), may help guide rehabilitation strategies after surgical decompression for cervical spondylotic myelopathy (CSM). Currently, however, postoperative DWI is difficult to interpret, owing to signal distortions from spinal instrumentation. Therefore, we examined the relationship between postoperative DTI/DBSI-extracted from the rostral C3 spinal level-and clinical outcome measures at 2-year follow-up after decompressive surgery for CSM.
View Article and Find Full Text PDFThe tricarboxylic acid cycle, nutrient oxidation, histone acetylation and synthesis of lipids, glycans and haem all require the cofactor coenzyme A (CoA). Although the sources and regulation of the acyl groups carried by CoA for these processes are heavily studied, a key underlying question is less often considered: how is production of CoA itself controlled? Here, we discuss the many cellular roles of CoA and the regulatory mechanisms that govern its biosynthesis from cysteine, ATP and the essential nutrient pantothenate (vitamin B), or from salvaged precursors in mammals. Metabolite feedback and signalling mechanisms involving acetyl-CoA, other acyl-CoAs, acyl-carnitines, MYC, p53, PPARα, PINK1 and insulin- and growth factor-stimulated PI3K-AKT signalling regulate the vitamin B transporter SLC5A6/SMVT and CoA biosynthesis enzymes PANK1, PANK2, PANK3, PANK4 and COASY.
View Article and Find Full Text PDF