Publications by authors named "C J Cyron"

In focused ion beam (FIB) tomography, a combination of FIB with a scanning electron microscope (SEM) is used for collecting a series of planar images of the microstructure of nanoporous materials. These planar images serve as the basis for reconstructing the three-dimensional microstructure through segmentation algorithms. However, the assumption of a constant distance between consecutively imaged sections is generally invalid due to random variations in the FIB milling process.

View Article and Find Full Text PDF

Constrained mixture models have successfully simulated many cases of growth and remodeling in soft biological tissues. So far, extensions of these models have been proposed to include either intracellular signaling or chemo-mechanical coupling on the organ-scale. However, no version of constrained mixture models currently exists that includes both aspects.

View Article and Find Full Text PDF

During the Ross procedure, an aortic heart valve is replaced by a patient's own pulmonary valve. The pulmonary autograft subsequently undergoes substantial growth and remodeling (G&R) due to its exposure to increased hemodynamic loads. In this study, we developed a homogenized constrained mixture model to understand the observed adaptation of the autograft leaflets in response to the changed hemodynamic environment.

View Article and Find Full Text PDF

An intricate reciprocal relationship exists between adherent synthetic cells and their extracellular matrix (ECM). These cells deposit, organize, and degrade the ECM, which in turn influences cell phenotype via responses that include sensitivity to changes in the mechanical state that arises from changes in external loading. Collagen-based tissue equivalents are commonly used as simple but revealing model systems to study cell-matrix interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Magnesium-based implants are gaining popularity in orthopedic applications due to their ability to degrade and release bioactive Mg ions that influence mesenchymal stem cells (MSCs), which are crucial for bone regeneration.
  • The study utilized gene regulatory network analysis with time-series proteomics data to explore how MSCs respond to Mg ions over a 21-day period.
  • Key proteins and interactions were identified, including MYL1, MDH2, GLS, and TRIM28, which play significant roles in MSCs' molecular response to Mg ions, paving the way for advancements in orthopedic biomaterials.
View Article and Find Full Text PDF