Cancer treatments are advancing to harness the body's immune system against tumours, aiming for lasting effects. This progress involves combining potent chemotherapy drugs with immunogens to kill cancer cells and trigger lasting immunity. Developing new prodrugs that integrate both chemotherapy and immune-boosting elements could significantly improve anticancer outcomes by activating multiple mechanisms to kill cancer cells.
View Article and Find Full Text PDFOur understanding of cancer biology has increased substantially over the past 30 years. Despite this, and an increasing pharmaceutical company expenditure on research and development, the approval of novel oncology drugs during the past decade continues to be modest. In addition, the attrition of agents during clinical development remains high.
View Article and Find Full Text PDFThe original version of this Article contained an error in the spelling of the author Álvaro Sebastián-Serrano, which was incorrectly given as Álvaro Sebastián Serrano. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFExcitotoxicity, a critical process in neurodegeneration, induces oxidative stress and neuronal death through mechanisms largely unknown. Since oxidative stress activates protein kinase D1 (PKD1) in tumor cells, we investigated the effect of excitotoxicity on neuronal PKD1 activity. Unexpectedly, we find that excitotoxicity provokes an early inactivation of PKD1 through a dephosphorylation-dependent mechanism mediated by protein phosphatase-1 (PP1) and dual specificity phosphatase-1 (DUSP1).
View Article and Find Full Text PDFBackground: Glioblastoma multiforme (GBM) is a highly aggressive tumor of the central nervous system with a dismal prognosis for affected patients. Aberrant protein kinase C (PKC) signaling has been implicated in gliomagenesis, and a member of the PKC-activated protein kinase D (PRKD) family, PRKD2, was identified as mediator of GBM growth in vitro and in vivo.
Methods: The outcome of PRKD2 silencing and pharmacological inhibition on glioma cell proliferation was established with different glioma cell lines.