We recently identified a truncated and phosphorylated form of α-synuclein, pα-syn*, as a key neurotoxic α-synuclein species found in cultured neurons, as well as in mouse and Parkinson's disease patients' brains. Small pα-syn* aggregates localize to mitochondria and induce mitochondrial damage and fragmentation. Herein, we investigated the molecular basis of pα-syn*-induced toxicity.
View Article and Find Full Text PDFIn this chapter, we describe current therapeutic targets for prion diseases. We focus on targets that have been validated in vitro and in vivo, leaving out a plethora of theoretic targets that still require validation. We also show how the development of improved model systems for the study of prion infection and neurotoxic mechanisms has enabled target identification.
View Article and Find Full Text PDFExposure of cultured primary neurons to preformed α-synuclein fibrils (PFFs) leads to the recruitment of endogenous α-synuclein and its templated conversion into fibrillar phosphorylated α-synuclein (pα-synF) aggregates resembling those involved in Parkinson's disease (PD) pathogenesis. Pα-synF was described previously as inclusions morphologically similar to Lewy bodies and Lewy neurites in PD patients. We discovered the existence of a conformationally distinct, nonfibrillar, phosphorylated α-syn species that we named "pα-syn*.
View Article and Find Full Text PDFFood Saf (Tokyo)
March 2017
In the early 90s', Europe was shaken by the fear that the prions from "mad cow disease" (bovine spongiform encephalopathy) would transmit the disease to humans via beef products. In 1996, the first variant Creutzfeldt-Jakob (vCJD) patients were described, and the same year our Bovine Spongiform Encephalopathy (BSE) transmission studies to cynomolgus macaques demonstrated that the BSE prion was highly infectious for primates, inducing brain lesions identical to those observed in vCJD patients. These studies provided the first experimental evidence that vCJD was BSE in humans.
View Article and Find Full Text PDF