Annexin A11 mutations are a rare cause of amyotrophic lateral sclerosis (ALS), wherein replicated protein variants P36R, G38R, D40G and D40Y are located in a small-alpha helix within the long, disordered N-terminus. To elucidate disease mechanisms, we characterised the phenotypes induced by a genetic loss of function (LoF) and by misexpression of G38R and D40G in vivo. Loss of Annexin A11 results in a low-penetrant behavioural phenotype and aberrant axonal morphology in zebrafish homozygous knockout larvae, which is rescued by human WT Annexin A11.
View Article and Find Full Text PDFMethods Mol Biol
September 2023
Primary cell culture is an invaluable method frequently used to overcome challenges associated with in vivo experiments. In zebrafish research, in vivo live imaging experiments are routine owing to the high optical transparency of embryos, and, as a result, primary cell culture has been less utilized. However, the approach still boasts powerful advantages, emphasizing the importance of sophisticated zebrafish cell culture protocols.
View Article and Find Full Text PDFLoss of SFPQ is a hallmark of motor degeneration in ALS and prevents maturation of motor neurons when occurring during embryogenesis. Here, we show that in zebrafish, developing motor neurons lacking SFPQ exhibit axon extension, branching and synaptogenesis defects, prior to degeneration. Subcellular transcriptomics reveals that loss of SFPQ in neurons produces a complex set of aberrant intron-retaining (IR) transcripts coding for neuron-specific proteins that accumulate in neurites.
View Article and Find Full Text PDFRegulation of pre-mRNA splicing and polyadenylation plays a profound role in neurons by diversifying the proteome and modulating gene expression in response to physiological cues. Although most of the pre-mRNA processing is thought to occur in the nucleus, numerous splicing regulators are also found in neurites. Here, we show that U1-70K/SNRNP70, a component of the major spliceosome, localizes in RNA-associated granules in zebrafish axons.
View Article and Find Full Text PDFManganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity.
View Article and Find Full Text PDF