TMEM87s are eukaryotic transmembrane proteins with two members (TMEM87A and TMEM87B) in humans. TMEM87s have proposed roles in protein transport to and from the Golgi, as mechanosensitive ion channels, and in developmental signaling. TMEM87 disruption has been implicated in cancers and developmental disorders.
View Article and Find Full Text PDFLithography based additive manufacturing techniques, specifically digital light processing (DLP), are considered innovative manufacturing techniques for orthopaedic implants because of their potential for construction of complex geometries using polymers, metals, and ceramics. Hydroxyapatite (HA) coupons, printed using DLP, were evaluated for biological performance in supporting viability, proliferation, and osteogenic differentiation of the human cell line U2OS and human mesenchymal stem cells (MSCs) up to 35 days in culture to determine feasibility for future use in development of complex scaffold geometries. Contact angle, profilometry, and scanning electron microscopy (SEM) measurements showed the HA coupons to be hydrophilic, porous, and having micro size surface roughness, all within favourable cell culture ranges.
View Article and Find Full Text PDFTweety homologs (TTYHs) comprise a conserved family of transmembrane proteins found in eukaryotes with three members (TTYH1-3) in vertebrates. They are widely expressed in mammals including at high levels in the nervous system and have been implicated in cancers and other diseases including epilepsy, chronic pain, and viral infections. TTYHs have been reported to form Ca- and cell volume-regulated anion channels structurally distinct from any characterized protein family with potential roles in cell adhesion, migration, and developmental signaling.
View Article and Find Full Text PDF